## Posts tagged ‘prime spectrum’

### Schemes in algebraic geometry 2 : prime spectra and generic points

I just explained how the affine plane could be described by the ring $\mathbb Z[x,y]$. A point M of the affine plane whose coordinate ring is R is a morphism $\mathbb Z[x,y] \to R$ defined by the assignment $P \mapsto P(a,b) \in R$, where $(a,b)$ are the coordinates of M. In the case of points corresponding to morphisms $\mathbb Z[x,y] \to \mathbb Z$, there is a natural way of recovering the point from the ring morphism by looking at his equations, which are elements of the kernel of the morphism. If M satisfies the equations $x=a$ and $y=b$, then M has the form $(a,b)$. This motivates the abstract definition of point of the affine plane as a morphism $\mathbb Z[x,y] \to R$ to some ring.

Conversely, the set of equations of M defines a canonically associated point $p_M$, which is the morphism $\mathbb Z[x,y] \to \mathbb Z[x,y]/I$, where $I$ is the ideal generated by the equations. But this morphism has no reason to totally recover M if it wasn’t a point with integral coordinates. For example, the point $(2,3)$ is a special point, satisfying a lot of equations, which characterize it. But $(\log 2, \pi)$ do not satisfy any polynomial equations with integral coefficients, so the set of its equations is empty, and cannot be used to recover it. Moreover, the point $(e, \log 3)$ does not satisfy equations either: their algebraic properties are exactly the same. These points are called generic.

The prime spectrum of a ring is a convenient way of describing equivalence classes of points of a given ring.
Definition. The prime spectrum of $A = \mathbb Z[x,y]$ is the set of points $p_I: A \to A/I$ for prime ideals $I$. If $M: A \to R$ is any point of the affine plane with coordinates in an integral domain $R$, then Mis canonically associated to some $p_M := p_I$, where $I$ is the kernel of the map $A \to R$.
(more…)