Posts tagged ‘highest weight’

Réprésentations de l’algèbre de Lie sl(2)

Alors que la géométrie mettait autrefois en avant l’importance des groupes et des transformations d’un objet (une philosophie défendue notamment par Klein), l’influence croissante de la mécanique, l’algèbre et l’analyse tend à remplacer la théorie des groupes par celle des algèbres de Lie. La théorie de Lie, développée par Borel et Chevalley permet d’étudier les représentations de certains groupes à travers leurs algèbres de Lie, et la géométrie différentielle en est également friande.

Whereas geometry in its old times would highlight the importance of groups of transformations (as in the Erlangen program introduced by Klein), modern developments in mechanics, algebra and calculus would rather use the language of Lie algebra. Lie theory was actively developed by Borel and Chevalley, allowing to understand groups through their Lie algebras, and differential geometry is closely related to this subject as well.

Le groupe SL2

Le groupe SL2 est le groupe constitué des matrices \begin{pmatrix} a & b \\ c & d \\ \end{pmatrix} telles que ad-bc = 1. L’inverse d’une telle matrice est donné par \begin{pmatrix} d & -b \\ -c & a\\ \end{pmatrix}.

(more…)

Advertisements

25 January 2009 at 11:19 am 2 comments


Pages

Categories