Archive for January, 2009

Les droites de l’espace et la grassmannienne

Le calcul de Schubert désigne un ensemble de techniques destinées à calculer les propriétés énumératives, ou numériques, d’objets communs de l’algèbre linéaire (voir notamment les excellents ouvrages de William Fulton à ce propos). L’exemple traditionnellement choisi, et probablement le plus simple, concerne l’ensemble des droites de l’espace (à 3 dimensions).

Une droite de l’espace est habituellement repérée par sa direction (qui est une droite vectorielle, et dépend donc de deux paramètres, et sa position, qui dépend de deux paramètres supplémentaires (à direction fixée). L’ensemble des droites peut donc être paramétré par quatre paramètres, on peut montrer qu’il est de dimension quatre. Plus intéressant encore, si on place dans l’espace deux plans parallèles, presque toutes les droites peuvent être décrites (de manière unique) par leurs points d’intersection avec ces plans : on obtient ainsi une description par 4 fractions rationnelles (à supposer qu’on sache ce qu’on est en train de paramétrer, ce qui sera plus clair dans une seconde). Ce paramétrage est à peu de chose près bijectif (il manque les droites un peu particulières) : on dit que l’ensemble des droites forme une variété rationnelle.

Le plongement de Plücker

Pour éviter de fastidieuses études de cas, on s’intéresse également aux droites de l’espace projectif : on peut les repérer par les coordonnées de Plücker. Étant donnée une droite de l’espace, considérons deux points sur cette droite de coordonnées projectives {M = [a_1:a_2:a_3:a_4]} et {N = [b_1:b_2:b_3:b_4]}. Les coordonnées de Plücker de la droite sont, par définition, les 6 nombres x_{ij} = (a_i b_j - a_j b_i). Si on avait choisi d’autres points (qui seraient donc des barycentres de M et N), on aurait obtenu des nombres de la forme

(\lambda a_i + \mu b_i)(\nu a_j + \pi b_j) - (\lambda a_j + \mu b_j)(\nu a_i + \pi b_i)
= (\lambda \pi - \mu \nu)(a_i b_j - a_j b_i)

qui sont en fait proportionnels à ceux calculés avec M et N. Les droites sont donc naturellement paramétrées par des coordonnées projectives et forment la variété grassmannienne des droites de l’espace.

(more…)

30 January 2009 at 8:33 am 1 comment

Réprésentations de l’algèbre de Lie sl(2)

Alors que la géométrie mettait autrefois en avant l’importance des groupes et des transformations d’un objet (une philosophie défendue notamment par Klein), l’influence croissante de la mécanique, l’algèbre et l’analyse tend à remplacer la théorie des groupes par celle des algèbres de Lie. La théorie de Lie, développée par Borel et Chevalley permet d’étudier les représentations de certains groupes à travers leurs algèbres de Lie, et la géométrie différentielle en est également friande.

Whereas geometry in its old times would highlight the importance of groups of transformations (as in the Erlangen program introduced by Klein), modern developments in mechanics, algebra and calculus would rather use the language of Lie algebra. Lie theory was actively developed by Borel and Chevalley, allowing to understand groups through their Lie algebras, and differential geometry is closely related to this subject as well.

Le groupe SL2

Le groupe SL2 est le groupe constitué des matrices \begin{pmatrix} a & b \\ c & d \\ \end{pmatrix} telles que ad-bc = 1. L’inverse d’une telle matrice est donné par \begin{pmatrix} d & -b \\ -c & a\\ \end{pmatrix}.

(more…)

25 January 2009 at 11:19 am 2 comments

Extensions of sheaves and the local-global spectral sequence

GIven a topological space X, algebraic topologists would sometimes be interested in sheaves over this space. In most cases, these sheaves are sheaves of functions with some special property, or sheaves of modules over these rings. We could casually say thet the notion of sheaf is some mix of topology and algebra (more generally, categories), which allows to remember where are localized objects. For example, the set of continuous functions over a compact space can sometimes allow to recover an isomorphic space, but its mere normed algebra structure does not immediately say things like: “i am greater here than there”, “i am positive here and negative there”…

So a sheaf is not only determined by a set of fonctions (the commonly used term is section) defined over the whole space, but also by sections over open sets, and by the restriction maps between these various sets of sections. A sheaf has also a gluing theory : if we choose sections over open sets with equal restrictions on the intersections, they must glue to a section over the union of the open sets (if not, our object does not deserve to be a sheaf, so it is only a presheaf).

Virtually anything which can be restricted to open sets and defined locally defines a sheaf: continuous functions form a sheaf, but functions with ||f||_{\infty} = 1 do not usually form a sheaf (this property is not local). A sheaf of abelian groups is a sheaf of things which can be (locally) added and substracted, a sheaf of rings has sections which can be multiplied, and we can also define sheaves of modules over a sheaf of rings.

A morphism of sheaves f: F \to G is a map which is determined by the image of localized sections. In the case of abelian groups, the kernel sheaf is the sheaf of sections of F which are locally in the kernel of f, while the quotient sheaf (cokernel) is something looking like G where sections are identified if locally it should be so. A morphism is thus injective or surjective if locally it is so. Sheaves of abelian groups (or sheaves of modules over some sheaf of rings) form an abelian category, and it makes sense to speak of the extension group \mathrm{Ext}^1(F,G) for two such sheaves F and G. Suppose we are working with sheaves of modules (especially coherent sheaves) over a sheaf of rings \mathcal O_X. How should we compute this group ?

(more…)

10 January 2009 at 5:02 pm Leave a comment

Extensions and homological algebra

If you ever followed a course in algebra, you may have heard about extensions of “things”. Most “things” fit in what is called a category, that is, an abstract structure remembering how to compose morphisms between these “things”, and sometimes what is the sum of such “things”, the kernel of a morphism: we are interested in the structure of abelian category, which is the framework of vector spaces, modules over a ring, sheaves of modules… An extension of A by B is an exact sequence

0 \to B \to E \to A \to 0

where B is the kernel, and A is the quotient (cokernel). The group of extensions \mathrm{Ext}^1(A,B) is the set of isomorphism classes of such exact sequences. (more…)

10 January 2009 at 12:02 pm Leave a comment

Intégrales elliptiques et moyenne arithmético-géométrique

Le calcul de la moyenne arithmético-géométrique est un algorithme simple et très puissant découvert par Gauss permettant de calculer les intégrales elliptiques. L’excellent article de David Cox [1] dans L’enseignement mathématique expose l’historique des découvertes et recherches de Gauss sur le sujet.

La moyenne arithmético-géométrique a été définie par Lagrange, et est calculée de la manière suivante : si a et b sont deux réels positifs, on définit leur moyenne géométrique G = \sqrt{ab} et leur moyenne arithmétique A = \frac{a+b}{2}. Il est bien connu que G \leq A, et on a

A-G = \frac 1 2 (\sqrt b - \sqrt a)^2

Cette relation permet de montrer que si on définit des suites (a_n) et (b_n) telles que a_{n+1} et b_{n+1} sont les moyennes arithmétique et géométrique de a_n et b_n, ces suites convergent vers une même limite, notée M(a,b), la moyenne arithmético-géométrique.

Gauss remarqua à l’aide d’un changement de variable (très) astucieux que l’intégrale

\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}}

restait invariante en remplaçant a et b par leurs moyennes arithmétique et géométrique. Il en déduit la valeur \frac{\pi}{2M(a,b)}. Il montra aussi que la longueur d’un quart de lemniscate de Bernoulli est \pi / 2 M(1, \sqrt 2).
On sait également qu’il relia ces propriétés à celles des fonctions thêta.
(more…)

6 January 2009 at 8:12 pm Leave a comment

Bicircular quartic curves

Working in the Euclidean (projective) plane, a bicircular quartic curve is defined to be a quartic which is singular at the circular points I and J. We are usually interested in real curves, so the type of singulaity is the same at I or J. Salmon in his Treatise on Higher Plane Curves and Basset in his Elementary Treatise on Cubic and Quartic curves deal in detail with these curves.

A plane quartic curve has arithmetic genus h^1(\mathcal O_X) = 3, but since bicircular quartics have at least two double points, they have geometric genus 0 or 1 (genus of the desingularized curve).
Curves having geometric genus 0 are called rational curves (formerly known as unicursal curves), and admit a parameterization by rational functions of one variable.

Families of bicircular curves were defined by Cassini and Descartes by metric properties : Cassini ovals are defined by the equation MA \cdot MB = k^2 where A and B are fixed foci, while Descartes define Cartesian ovals by the equation a \cdot MA + b \cdot MB = k (these equations are equivalently to algebraic quartic equations, using appropriate squarings).

(more…)

2 January 2009 at 5:33 pm 1 comment


Pages

Categories